

INSTRUMENTATION

Microprocessors and Interfaces: 2021-22 Lecture 14 8086 Logical Instructions : Part-1

By Dr. Sanjay Vidhyadharan

ELECTRICAL ELECTRONICS

COMMUNICATION

DAA vs. AAA

Normally a BCD number can be coded with 4 Bits (9 being the maximum value in BCD notation).

In unpacked BCD 8 bits are used to represent a BCD digit, with the higher nibble being 0.

The unpacked BCD can easily be converted to ASCII as you just have to add 30H for a byte and 3030H for a word.

If you see the ASCII code, 0 to 9 is represented as 30 to 39, where 3 is the header.

In packed BCD only 4 bits are used to represent a BCD digit and hence a byte represents two BCD digits.

Decimal: 9 1 Binary : 0000 1001 0000 0001 Unpacked Decimal: 9 1 Binary: 1001 0001 Packed

After addition of two BCD numbers AAA arranges it in unpacked BCD format, While ADD 3030H after that converts it to ASCII.

DAA vs. AAA

org 100h MOV AL, 9H : AX 0009 ADD AL, 1H : AX 000A DAA : AX 0010 ret

org 100h MOV AL, 9H : AX 0009 ADD AL, 1H : AX 000A AAA : AX 0100 ADD AX,3030H : AX 3130 ret

COMMUNICATION

130

XADD Instruction

XADD dest, sourceExchange (content of operands) and addXADD BL, CL

INSTRUMENTATION

After execution both the operand content will change.

ELECTRICAL ELECTRONICS COMMUNICATION

Logical Instructions

The logic instructions include

- AND
- OR
- Exclusive-OR
- NOT
- NEG
- Shifts
- Rotates
- TEST (logical compare).

2/25/2021

AND Destination, Source

ANDs each bit in the source with the corresponding bit in the destination

- CF and OF both become zero
- PF, SF and ZF affected
- AF undefined

AND

- AND clears bits of a binary number.
 called masking
- AND uses any mode except memory-to-memory and segment register addressing.
- An ASCII number can be converted to BCD by using AND to mask off the leftmost four binary bit positions.
 - x x x x x x x x Unknown number
 - 00001111 Mask

0000 x x x x Result

AND

₩ Ex1:

AND CX,[SI] ; AND word in DS at offset [SI] with word in CX register

INSTRUMENTATION

- ; result in CX register
- **Ex2:** BX= 10110011 01011110

AND BX, 00FFH ; Mask out upper 8 bits of BX ; Result :BX=00000000 01011110 ; CF,OF,PF,SF,ZF=0

ELECTRICAL ELECTRONICS COMMUNICATION

AND

Start: IN AL,80H; B7-Commercial Supply, B6-AC, B5-0 Lights/Fans
MOV BL,AL ;
AND AL,80H;
JNZ J1;
AND BL, BFH;
J1: OUT 81H,BL; (6-0 Pins controlled the loads)
MOV CL, FFH ;
LOOP: DCR CL;
JNZ LOOP;
JMP Start
HLT
Sal

OR Destination, Source

ORs each bit in the source with the corresponding bit in the destination

CF and OF both become zero PF, SF and ZF affected AF undefined

x x x x x x x x X Unknown number

+ 0 0 0 0 1 1 1 1 Mask

x x x x 1 1 1 1 Result

OR

Ex: CX=00111101 10100101 OR CX, FF00H ; Result in ; CX= 11111111 10100101 ; The upper byte now all 1's and lower byte not changed.

COMMUNICATION

INSTRUMENTATION

CF =OF =0 PF=1, SF=1, ZF=0

ELECTRONICS

ELECTRICAL

Exclusive-OR

- If inputs of the Exclusive-OR function are both 0 or both 1, the output is 0; if the inputs are different, the output is 1.
- Exclusive-OR is sometimes called a comparator.
- XOR uses any addressing mode except segment register addressing.
- Exclusive-OR is useful if some bits of a register or memory location must be inverted
- A common use for the Exclusive-OR instruction is to clear a register to zero

INSTRUMENTATION

Exclusive-OR

The operation of the Exclusive-OR function showing how bits of a number are inverted.

x x x x x x x x x X Unknown number ⊕000011111 Mask x x x x x x x x x x x Result

ELECTRICAL

ELECTRONICS

COMMUNICATION

Exclusive-OR

• Ex1: BX= 00111101 01101001

-31

CX= 0000000 11111111

XOR BX,CX ; Result: BX= 00111101 10010110

; bits in the lower byte are inverted.

Ex2: XOR WORDPTR [BX],00FFH

; XOR the immediate number 00FFH with word at offset [BX] in data segment .Result in memory location [BX].

TEST

TEST Destination, source

- **TEST** performs the AND operation.
 - only affects the condition of the flag register, which indicates the result of the test
 - functions the same manner as a CMP
- Usually the followed by either the JZ (jump if zero) or JNZ (jump if not zero) instruction.
- The destination operand is normally tested against immediate data.

TEST

TEST Destination, source

INSTRUMENTATION

Ex: AL= 01010001
TEST AL, 80H ;AND immediate 80H with AL to test if MSB of AL is 1or 0.
; AL = 01010001 (unchanged)
; PF=0,SF=0,
;ZF=1 because ANDing produced 00H

ELECTRICAL ELECTRONICS COMMUNICATION

NOT and NEG

- NOT and NEG can use any addressing mode except segment register addressing.
- The **NOT instruction inverts all bits** of a byte, word, or double word.
- NEG two's complements a number.
 - the arithmetic sign of a signed number changes from positive to negative or negative to positive

- The NOT function is considered logical
- NEG function is considered an arithmetic operation.

NOT and NEG

- ***** NOT Destination ; Invert each bit of operand
- **EX:** NOT BX ; complement the contents of BX register
- **NOT BYTEPTR [SI]**

- NEG Destination ; Form 2's complementEx: NEG BX ; Replace the contents in BX with it's 2's complement
- This instruction forms the 2's complement by subtracting the word or byte indicated in destination from zero.

Thankyou

2/25/2021

ELECTRICAL

ELECTRONICS

COMMUNICATION

INSTRUMENTATION

haral