

Microprocessors and Interfaces: 2021-22 Lecture 10

8086 Instructions Set: Part-4

By Dr. Sanjay Vidhyadharan

Data Transfer Instructions

2/11/2021 2

Saniay

MOVS with a REP

- The repeat prefix (REP) is added to any string data transfer instruction except LODS.
 - REP prefix causes CX to decrement by 1 each time the string instruction executes; after CX decrements, the string instruction repeats
- If CX reaches a value of 0, the instruction terminates and the program continues.

EX: If CX is loaded with 100 and a REP MOVSB instruction executes, the microprocessor automatically repeats the MOVSB 100 times.

Example of MOVS with a REP

Write an ALP that transfers a block of 50 bytes of data. The source and destination memory blocks start at 8000 H and 9000 H memory locations respectively. The data segment register value is 3000H.

Solution:

2000 MOV AX, 3000H

2003 MOV DS, AX

2005 MOV ES, AX

2007 MOV SI, 8000 H

200A MOV DI, 9000 H

200D MOV CX, 0032 H

2011 CLD

2012 REP MOVSB

2013 HLT

If at 2011 STD then ???

: Move initial address of DS register into AX.

: DS loaded with AX

: ES loaded with AX

: Source address put into SI.

: Destination address put into DI.

: Count value for number of bytes put into CX register

2/11/2021

COPY A BLOCK OF DATA FROM ONE MEMORY AREA TO ANOTHER MEMORY AREA-50 DATA

```
.data
```

Array1 db0ah,bch,deh,0f5h,11h, 56h,78h,0ffh,0ffh,23h4ah,...

Array2 db $50 \operatorname{dup}(0)$

.code

startup

MOV CX, 32H

LEA SI, array1

LEA DI, array2

CLD

REP MOVSB

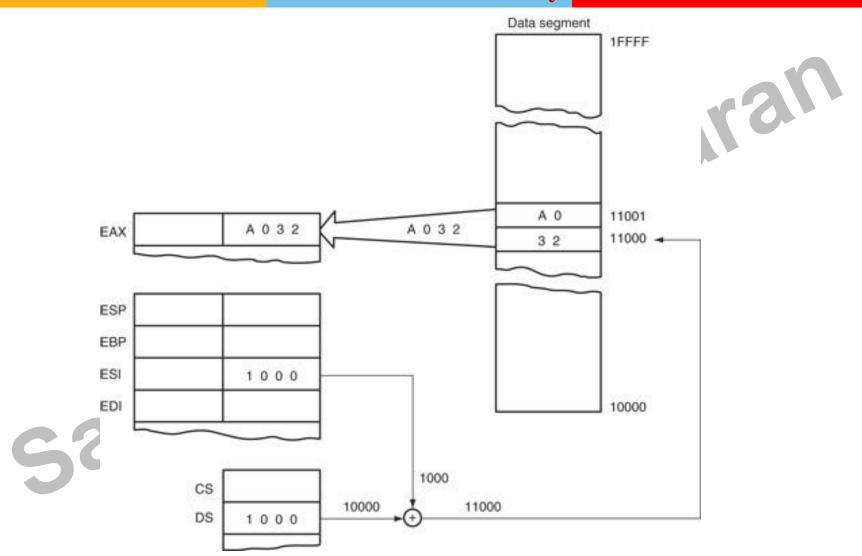
.EXIT

END

LODS/LODSB/LODSW /LODSD

Loads AL or AX or EAX with the data stored at the data segment

- •Offset address indexed by SI register
- •After loading contents of SI INC if D = 0 & DEC if D = 1


LODSB;
$$AL = DS:[SI]$$
; $SI = SI \pm 1$

LODSW;
$$AX = DS:[SI]$$
; $SI = SI \pm 2$

LODSD;
$$EAX = DS:[SI]$$
; $SI = SI \pm 4$

•LODS affects no FLAGs

The operation of the LODSW instruction if DS=1000H, D=0,11000H,=32 11001H = A0. This instruction is shown after AX is loaded from memory, but before SI increments by 2.

STOS /STOSB/STOSW

Stores AL or AX or EAX into the Extra segment ES memory at Offset address indexed by DI register

•After storing contents in DI, INC if D = 0 & DEC if D = 1

STOSB; ES:[DI]=AL; DI = DI ± 1

STOSW; ES:[DI]=AX; DI = DI ± 2

STOSD; ES:[DI]=EAX; DI = DI ± 4

STOS affects no FLAGs

Write an ALP to fill a set of 100 memory locations starting at displacement 'DAT1' with the value F6H

.DATA

DAT1 DB 100 DUP(?)

.CODE

.STARTUP

MOV DI, OFFSET DAT1

MOV AL, 0F6H

MOV CX, 64H

CLD

REP STOSB

.EXIT

END

INS

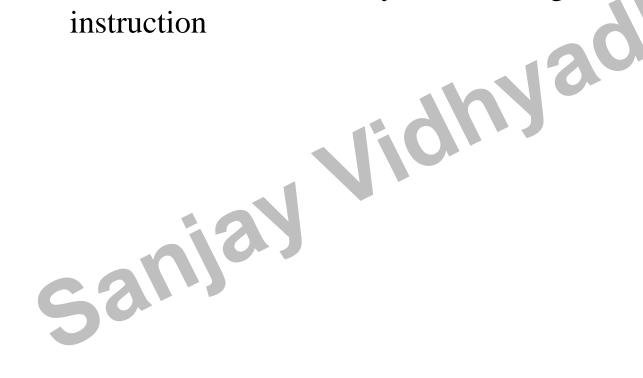
- Transfers a byte or word of data from an I/O device into the extra segment memory location addressed by the DI register.
 - I/O address is contained in the DX register
- Useful for inputting a block of data from an external I/O device directly into the memory.
- Ex: One application transfers data from a disk drive to memory.
 - disk drives are often considered and interfaced as I/O devices in a computer system

THREE basic forms of the INS.

- INSB inputs data from an 8-bit I/O device and stores it in a memory location indexed by DI.
- INSW instruction inputs 16-bit I/O data and stores it in a word-sized memory location.
- INSD instruction inputs 32-bit I/O data and stores it in a word-sized memory location.
- These instructions can be repeated using the REP prefix
 - allows an entire block of input data to be stored in the memory from an I/O device

INS Examples

-1


```
6C INSB Input byte from port DX into ES: (E) DI
```

6D INSW Input word from port DX into ES: (E) DI

OUTS

- Transfers a byte or word data from the data segment memory location address indexed by SI to an I/O device.
 - I/O device addressed by the DX register as with the INS instruction

Thank you

2/11/2021

Saniay