Microprocessors and Interfaces: 2021-22 Lab 6 ALP for
1.Arranging numbers in ascending order 2. Matrix addition

By Dr. Sanjay Vidhyadharan

ALPs to be completed

Problem 1: Arrange numbers in ascending order.

Problem 2: Find matrix addition (2×2) for two numbers.

6.1 Arrange numbers in ascending order

Assume the numbers and memory locations are given by

Data	A2h	23 h	66 h	12h	7Dh
Add.	501	502	503	504	505

Number of passes required: $\mathrm{N}-1$

	A2h	$23 h$	$66 h$	$12 h$	$7 D h$
	$23 h$	A2h	$66 h$	$12 h$	$7 D h$
	$23 h$	$66 h$	A2h	$12 h$	$7 D h$
	$23 h$	$66 h$	$12 h$	A2h	$7 D h$
	$23 h$	$66 h$	$12 h$	$7 D h$	A2h

(1 number sorted)

6.1 Arrange numbers in ascending order

Pass 2	23h	66h	12h	7Dh	A2h	(2 numbers sorted)
	23h	66 h	12h	7Dh	A2h	
	23h	12h	66 h	7Dh	A2h	
	23h	12h	66 h	7Dh	A2h	
					O	
Pass 3	23h	12h	66 h	7Dh	A2h	(3 numbers sorted)
	12h	23h	66 h	7Dh	A2h	
	12h	23h	66h	7Dh	A2h	
	\bigcirc	\cdots				
Pass 4	12h	23h	66 h	7Dh	A2h	(All numbers sorted)
	12h	23h	66 h	7Dh	A2h	

6.1 Arrange numbers in ascending order

6.1 Review Questions

1. How CMP instruction works?
2. Which registers are to be modified for 16 -bit data?
3. Repeat the problem using the data in the following order: 99H,12H,56H,45H,36H
4. What should be the content of the memory location 0700:0500?

6.2 Matrix addition (3×3) for two numbers

- Matrix to be stored in the form of array in the memory location.
- Storing matrix data to be taken care by BX, BP and DI registers.
- SI to be used to identify the data locations.
- Arithmetic operation to be done element wise.
- Loop instruction to be used to repeat the operations
- CL register to store the number of data in a matrix.

1. To be loaded by $B X$ register
2. To be loaded by DI register

6.2 Matrix addition (3×3) for two numbers

6.2 Matrix addition

```
; Same-size matrices addition (of 16b word elements): C = A + B
; ds:si = A address, ds:bx = B address
; ds:di = C address, cx = total amount of elements
; modifies: all input registers and ax
matrices_add:
    mov ax,[si]
    add \(a x,[b x] \quad ; a x=A[i]+B[i]\)
    mov [di],ax ; C[i] = ax
    ; ++i (actually advancing all three pointers instead of using index)
    add si,2
    add bx,2
    add di,2
    ; loop until all elements are added
    dec cx
    jnz matrices_add
    ret
```


6.2 Review Questions

1. What should be the value of CL represent in the given pseudocode?
2. Change the previous code to solve the following.

$$
\left[\begin{array}{ll}
02 & 03 \\
07 & 09
\end{array}\right]+\left[\begin{array}{ll}
97 & 31 \\
A 2 & 87
\end{array}\right]
$$

Thankyou

