Microprocessors and Interfaces: 2021-22 Lab 2

8086 Arithmetic Operations

By Dr. Sanjay Vidhyadharan

- 2.1 Addition of two numbers

- Instruction to be used: ADD

Instruction
Operands
REG, memory
memory, REG
ADD REG, REG
memory, immediate
REG, immediate

Operand 1 = Operand $1+$ Operand 2

Usage Description

Example:

$$
\begin{aligned}
& \text { ADD AL,BL } \\
& \text { ADD AL,-5 }
\end{aligned}
$$

Operates on both 8-bit or 16-bit numbers.

\mathbf{C}	\mathbf{Z}	\mathbf{S}	\mathbf{O}	\mathbf{P}	\mathbf{A}
r	r	r	r	r	r

r: flag value depends on result of the instruction

- Effect on Flags

- 2.1 Addition of two 8-bit numbers

- Example Code
- org 100h
- MOV AL, OFOH
- MOV BL, 010H
- ADD AL,BL
- ret

CF: Carry is generated when performing n bit operations and the result is more than n bits, then it is 1 , otherwise 0 .

ZF: After any arithmetical or logical operation results $0(00) \mathrm{H}$, the zero flag is 1 , otherwise 0.
2. Click here to check the conditions of flags of the $\mu \mathrm{p}$.

PF: 1 accumulator has even number of 1 bits 0 accumulator has odd parity

- 2.2 Addition of two 16-bit numbers

- Example Code
- org 100h
- MOV

CX, 1234H

- MOV

DX,5678H

- ADD CX,DX
- ret

2. Click here to check the conditions of flags of the $\mu \mathrm{p}$.

- 2.3 Subtraction of two numbers

- Instruction to be used: SUB

Instruction
Operands
REG, memory
memory, REG
SUB REG, REG
memory, immediate
REG, immediate

Operand 1 = Operand 1 - Operand 2
Example:
SUB AL,BL
SUB AL, 1
Operates on both 8-bit or 16-bit numbers.

\mathbf{C}	\mathbf{Z}	\mathbf{S}	\mathbf{O}	\mathbf{P}	\mathbf{A}
r	r	r	r	r	r

r: flag value depends on result of the instruction

- Effect on Flags
- 2.3 Subtraction of two 8-bit numbers
- Example Code
- org 100h
- MOV AL, 009 H
- MOV BL,006H
- SUB AL,BL
- ret

2. Click here to check the conditions of flags of the μ p.

- 2.4 Subtraction of two 16-bit numbers
- Example Code
- org 100h
- MOV

AX, OFCBAH

- MOV

BX, 01D3FH

- SUB AX,BX
- ret

2. Click here to check the conditions of flags of the μ p.

AF: 1-carry out from bit 3 on addition or borrow into bit 3 on subtraction 0 -otherwise

- 2.5 Multiplication of two numbers

- Instruction to be used: MUL

Instruction

Operands

REG
memory

Usage Description

When operand is a byte: $A X=A L \times$ operand.

When operand is a word: $(D X A X)=A X \times$ operand.

- Effect on Flags

\mathbf{C}	\mathbf{Z}	\mathbf{S}	\mathbf{O}	\mathbf{P}	\mathbf{A}		
r	r	r	r	r	\mathbf{r}	\quad	\mathbf{r} : flag value depends on
---:							
result of the instruction.							

- $\mathrm{CF}=\mathrm{OF}=0$ when high section of the result is zero.

- 2.5 Multiplication of two 8-bit numbers

- Example Code
- org 100h
- MOV AX, 04 H
- MOV BX,05H
- MUL BX
- ret
- 2.6 Multiplication of two 16 -bit numbers
- Example Code
- org 100h
- MOV AX, 0111H
- MOV BX, 1212H
- MUL BX
- ret

Check the content
of both AX and DX
registers.

- 2.7 Division of two numbers

- Instruction to be used: DIV

Instruction

	REG
DIV memory	

Usage Description

When operand is a byte:
AL = AX / operand
$\mathrm{AH}=$ remainder (modulus)
When operand is a word:
$A X=(D X A X) /$ operand
DX = remainder (modulus)

- 2.7 Division of two 8-bit numbers

- Example Code

Check the content
of both AL and DL
registers.

- 2.8 Division of two 16-bit numbers

- Example Code
- org 100h
- MOV

AX, 2312H

- MOV

BX,1010H

- DIV BX
- ret

Check the content
of both AX and DX
registers.

- Exercise

- Write ALP codes for the following arithmetic oparatinnc.

Problem No. Arithmetic Instructions

```
Which registers are to be used?
```

1	$12 \mathrm{H}+\mathrm{CAH}$	CL, DL
2	$1 \mathrm{~A} 4 \mathrm{CH}+\mathrm{B} 1 \mathrm{DEH}$	AX, BX
3	$7 \mathrm{AH}-4 \mathrm{CH}$	CL, DL
4	$3 \mathrm{~B} 7 \mathrm{AH}-\mathrm{C} 142 \mathrm{H}$	BX, CX
5	$1 \mathrm{DH} \times 77 \mathrm{H}$	AL, BL
6	$\mathrm{EF} 1 \mathrm{AH} \times \mathrm{CD} 50 \mathrm{H}$	AX, BX
7	$19 \mathrm{H} \div 03 \mathrm{H}$	AL, BL
8	$1927 \mathrm{H} \div 1201 \mathrm{H}$	AX, BX

In each case interpret the results of different flags. Crosscheck your results by converting them into decimal numbers.

