

Microprocessors and Interfaces: 2021-22 Lab 2 8086 Arithmetic Operations

By Dr. Sanjay Vidhyadharan

2.1 Addition of two numbers

Instruction to be used: ADD

Instruction	Operands	Usage Description
ADD	REG, memory	Operand 1 = Operand 1 + Operand 2
	memory, REG	Evample:
	REG, REG	Example: ADD AL,BL
	memory, immediate	ADD AL,-5
	REG, immediate	Operates on both 8-bit or 16-bit numbers.

C	Z	S	0	Ρ	A
r	r	r	r	r	r

r: flag value depends on result of the instruction

• Effect on Flags

2.1 Addition of two 8-bit numbers

Example Code

- org 100h
- MOV AL, 0F0H
- MOV BL,010H
- ADD AL, BL
- ret

CF: Carry is generated when performing n bit operations and the result is more than n bits, then it is 1, otherwise 0.

ZF: After any arithmetical or logical operation results 0 (00)H, the zero flag is 1, otherwise 0.

2. Click here to check the conditions of flags of the μp.

3. Interpret the results of the

PF: 1 accumulator has even number of 1 bits 0 accumulator has odd parity

3

2.2 Addition of two 16-bit numbers

Example Code

- org 100h
- MOVCX,1234H
- MOV DX,5678H
- ADD CX,DX

5311

ret

2. Click here to check the conditions of flags of the μp.

Interpret the results of the flags of the μp.

2.3 Subtraction of two numbers

Instruction to be used: SUB

Instruction	Operands	Usage Description
SUB	REG, memory	Operand 1 = Operand 1 - Operand 2
	memory, REG	Evample:
	REG, REG	Example: SUB AL,BL
	memory, immediate	SUB AL,1
	REG, immediate	Operates on both 8-bit or 16-bit numbers.

C	Z	S	0	Ρ	A
r	r	r	r	r	r

r: flag value depends on result of the instruction

• Effect on Flags

2.3 Subtraction of two 8-bit numbers

Example Code

- org 100h
- MOV AL,009H
- MOV BL,006H

52111

- SUB AL, BL
- ret

2. Click here to check the conditions of flags of the μp.

2.4 Subtraction of two 16-bit numbers

Example Code

- org 100h
- MOV AX,0FCBAH
- MOV BX,01D3FH
- SUB AX, BX
- ret

SF: 1- MSB is 1 (negative)

0- MSB is 0 (positive)

2. Click here to check the conditions of flags of the μp.

3. Interpret the results of the

the

flags

AF: 1-carry out from bit 3 on addition or borrow into bit 3 on subtraction 0-otherwise

2.5 Multiplication of two numbers

Instruction to be used: MUL

Instruction	Operands	Usage Description
	REG	When operand is a byte : AX = AL × operand.
MUL	memory	When operand is a word : (DX AX) = AX × operand.

Effect on Flags

С	Z	S	0	P	A
r	r	r	۲	r	r

r: flag value depends on result of the instruction.

• CF = OF = 0 when high section of the result is zero.

2.5 Multiplication of two 8-bit numbers

2.6 Multiplication of two 16-bit numbers

Example Code

- org 100h
- MOV AX, 0111H
- MOV BX,1212H
- MUL BX
- ret

Check the content of both AX and DX registers.

2.7 Division of two numbers

Instruction to be used: DIV

Instruction	Operands	Usage Description
	REG	When operand is a byte : AL = AX / operand AH = remainder (modulus)
DIV	memory	When operand is a word : AX = (DX AX) / operand DX = remainder (modulus)

2.7 Division of two 8-bit numbers

Example Code

- org 100h
- MOV AX,20H
- MOV BX, 10H
- DIV BX
- ret

Check the content of both AL and DL registers.

2.8 Division of two 16-bit numbers

- Example Code
- org 100h
- MOV
 AX,2312H
- MOV BX,1010H
- DIV BX
- ret

Check the content of both AX and DX registers.

Exercise

Write ALP codes for the following arithmetic

Operations.

Problem No.	Arithmetic Instructions	Which registers are to be used?
1	12H + CAH	CL, DL
2	1A4CH + B1DEH	AX, BX
3	7AH – 4CH	CL, DL
4	3B7AH – C142H	BX, CX
5	1DH × 77H	AL, BL
6	EF1AH × CD50H	AX, BX
7	19H ÷ 03H	AL, BL
8	1927H ÷ 1201H	AX, BX

In each case interpret the results of different flags. Crosscheck your results by converting them into decimal numbers.

• Thankyou Sanian